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ABSTRACT

Electrochemical CO, reduction has been considered as a potential route to convert harmful CO, to valuable hydrocarbons for sustainable carbon cycles. However, the
poor selectivity obstructs the applications. According to DFT calculations, CO iIs the most common and important intermediate during CO, reduction reaction, but further
reaction mechanisms are still unclear, In this work, we used in situ surface enhanced Iinfrared absorption spectroscopy (SEIRAS), In situ X-ray absorption spectroscopy
(XAS, Cu L-edge) and on-line gas chromatography to study the electrochemical CO, reduction mechanism occurred in different copper catalysts. We observed various CO
Intermediates such as CO,,, and COy4,., ON copper surface during electrochemical CO, reduction and the formation of CO,,,/COy,;4,. Can be correlated to the existence of
Cu(l) and Cu(0) oxidation state. The existence of CO,, results in the formation of methane during further reduction. In addition, ethylene can be produced in the presence
0f COyep and COyji44e- Our results suggest the electrochemical CO, reduction mechanism by controlling the oxidation state of Cu electrode and reaction intermediates.

Our strategies

» By using different In situ spectroscopy, we try to
provide a catalyst design principle.

Introduction

» Converting CO, to valuable products » Proposed CO, reduction pathway
by renewable energy
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What is the key factor to result in different reaction pathway?

Results and discussions » X-ray absorption spectroscopy to monitor the surface
» Catalytic performance of copper-based catalysts electronic states during reaction
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» In situ SEIRAS to observe key intermediates during reaction after electrochemical CO, reduction reaction.
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Figure 2. In situ surface-enhanced infrared spectroscopy of (a) electrodeposited Cu, (b) as-prepared Cu 100
and (c) CV-oxidized Cu during electrochemical CO, reduction in the potential range of 0.3~ -1V (vs. RHE).
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Figure 3. Potential-dependent intermediates intensities on electrodeposited Cu, as-prepared Cu and CV- Electrodeposited Cu As-prepared Cu  CV-treated Cu

oxidized Cu extracted from figure 2. The schematic illustrations of intermediates are also presented.

Conclusions .

> The electrochemical CO, reduction mechanism was examined > Schematic illustration of CO2RR be £
. e . mechanisms on Cu

by In situ SEIRAS, In situ XAS and on-line gas chromatography. ® \ } \/ 4.
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state of Cu(0) in different final products. » " D "' ""' ""“"""'
> The co-existence of CO,,, and CO,q. iS considered as the | .
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