Skip to content

EACON 2020

EurAsian Conference on Nanophotonics

April 6 – 9, 2020 / Jena, Germany

Ta-Jen Yen

Department of Materials Science and Engineering, National Tsing Hua University, 30013 Hsinchu, TAIWAN

Empowering Bilayer MoSby Engineered Plasmonic Nanostructures for Optoelectronic Applications

Recently, extracting hot electrons from plasmonic nanostructures and utilizing them to enhance the optical quantum yield of 2D transition-metal dichalcogenides (TMDs) have been topics of interest in the field of optoelectronic device applications, such as solar cells, light emitting diodes, photodetectors and so on. The coupling of plasmonic nanostructures with nanolayers of TMDs depends on the optical properties of the plasmonic materials, including radiation pattern, resonance strength, and hot electron injection efficiency. Herein, we present three cases of intensifying the light-matter interactions between nano-scale plasmonic structures and a large-scale, transfer-free bilayer MoS2. These methods include 1. unusual quadrupole gap plasmons (QGPs) in the tailored nanoantennas [1], 2. four different morphology-controlled plasmonic nanoparticles, and 3. engineering the bandgap of the bilayer MoSwith the localized strain from the plasmonic nanostructures. By introducing the plasmonic effects aforementioned into the large-scale, transfer-free bilayer MoS2, our experimental results demonstrate not only excellent optoelectronic response, but also practical applications in hydrogen evolution reaction, photodetection and others.


  1. Pavithra Sriram, Dong-Sheng Su, Sheng-Wen Wang, Arumugam Manikandan, Arun Prakash Periasamy, Huan-Tsung Chang, Yu-Lun Chueh and Ta-Jen Yen*, “Hybridizing Strong Quadrupole Gap Plasmons using Optimized Nanoantennas with Bilayer MoS2 for Excellent Photoelectrochemical Hydrogen Evolution”, Advanced Energy Materials (8), p.1801184, (2018)

Further Talks

Andrea Csáki

Microfludic Synthesis of plasmonic Nanoparticles for Sensing Applications

Andrey Turchanin

Controlled growth of transition metal dichalcogenide monolayers for applications in nanoelectronic and nanophotonic devices

Chi Chen

Near Field Spectroscopic Imaging: from Hard to Soft Materials

Chi-How Peng

Cobalt mediated controlled/living radical polymerization: from mechanism understanding to materials application

Chun-Hong Kuo

Bridging Energy and Chemistry via Nanoarchitectonic Engineering at Atomic Scale

Falk Eilenberger

Integration of two-dimensional materials in optical systems for nonlinear optics, sensing, and single photon sources

Frank Setzpfandt

Nonlinear frequency conversion in nanostructured optical systems for application in quantum photonics

Heng-Liang Wu

Controlling the Oxidation State of Cu Electrode and Reaction Intermediates for Electrochemical CO2 Reduction to Ethylene

Kien-Voon Kong

Direct Observation of Reaction Intermediates of Metal-based Therapeutic Agents in Single Living Cell Using TERS

Maria Wächtler

Quantum confined semiconductor nanostructures in light-driven catalysis

Martin Presselt

Supramolecular Control of Optical and Electronical Properties of Two-Dimensional Dye Layers

Po-Chiao Lin

New Environment Sensitive Fluorophores with Color-Tailored Emission: In Vivo Monitoring of Carbonic Anhydrases Expression on Growth of Larval Zebrafish

Shangjr (Felix) Gwo

Plasmonic Metasurface-Enhanced Linear and Nonlinear Processes in Two-Dimensional Semiconductors

Ta-Jen Yen

Empowering Bilayer MoS2 by Engineered Plasmonic Nanostructures for Optoelectronic Applications

Tiow-Gan Ong

Carbodicarbene, Carbogenic Maverick, Not a Moderate!

Volker Deckert

Plasmon Enhanced Probe Spectroscopies – Structural Investigation of Nanoscale Objects

Yi-Tsu Chan

Molecular self-assembly methodology for rational construction of metallosupramolecules with high structural complexity

Yian Tai

Toward a universal polymeric material for electrode buffer layers in organic optoelectronics

Yu-Chieh Cheng

Kirigami-based soft robots with light-responsive properties

Yu-Jung Lu

Controlling Light-matter Interactions at Nanoscale with Plasmonics: From Spontaneous Emission to Lasing